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ABSTRACT: Constitutive equations for composite materials with reinforcing fibres and micro-flaws are 
derived in the framework of continua with microstructure (multi-field continua). These equations are based on 
the kinematics and the statics of the material at the microscopic level and account for the geometry and the 
texture of the material internal phases. Considering homogeneous deformations for the microscopic model 
(lattice model) the equivalent macroscopic model proves to be a multi-field continuum. Differently from the 
classical continuous models, this continuum includes internal scale parameters which allow taking into account 
size effects. The study of a one-dimensional problem points out the influence of the microstructure on the 
macroscopic behaviour of the composite material. 

1. INTRODUCTION 

At the macroscopic level composite materials, made 
of short, stiff and strong fibres embedded in a more 
deformable matrix, present mechanical behaviour that 
strongly depends on the shape, the size, the 
orientation and the disposition of the fibres. 
Moreover, due to manufacturing defects or lack of 
cohesion, microflaws can be present in the matrix.  
In this work, a constitutive model with microstructure 
is proposed. This model is a continuum with three 
different material levels: the macrostructural level, the 
matrix, and two microstructural levels of the internal 
phases, the fibres and the flaws. In particular, the 
fibres are perceived as rigid inclusions and the flaws 
as slit microcracks, both uniformly distributed in the 
material. Three homogeneous fields describe the 
kinematics of this continuum: the standard 
displacement vector field, the micro-rotation tensor 
field, and a micro-displacement vector field. The 
microscopic fields represent respectively the rotations 
of the individual fibres and the distributed 
displacement jump due to the presence of microflaws 
in the matrix.  
Traditionally, most of the continuous constitutive 
models proposed, accounting for the wide variety of 
geometry of the material internal phases as well as of 
their physical properties, are Cauchy continua 
developed within the framework of homogenisation 
theories (Hashin, 1989; Boutin, 1996). These continua 
present various disadvantages. For instance, due to the 
absence of internal length scales and of proper 
kinematical descriptors, they cannot represent the  

 
different behaviour of materials made of particles of 
different size. Moreover, various difficulties arise, 
when a characteristic dimension of a body is 
comparable to the internal length scales, like in the 
well-known strain-localisation phenomena in brittle 
materials (Read & Hegemier, 1984). Finally, if a 
thermo-mechanical process is considered, the 
constitutive assumption of a Cauchy material, even 
when improved with non-locality (Boutin, 1996), is 
incompatible with the second law of 
thermodynamics (Gurtin, 1965). 
The multi-field modelling proposed in this work, 
characterised by the presence of additional 
kinematical and dynamical field descriptors for the 
material microstructure, allows to grossly account 
for the features related to the actual discontinuous 
and heterogeneous nature of the composite material. 
This is a way to retain memory of the fine 
organisation of the material preserving the 
advantages of the continuum modelling but avoiding 
the above mentioned difficulties. 
 
 
2. MICROSCOPIC MODEL 
 
At the microscopic level the particle composite is 
characterised by distributions of fibres, much stiffer 
than the matrix in which they are embedded, and of 
microcracks, which are considered open, stationary 
and with blunt edges. For the fine description of 
such materials at this level a discrete model is 
proposed. This model is made of two interacting 
lattice systems: a lattice made of rigid particles of 



 

given shape connected in pair by linear elastic 
beams, representing the matrix with the fibres, and 
another 
lattice made of interacting slits of arbitrary shape with 
a predominant dimension, representing the 
microcracks.  
-  the interaction forces between the Let consider a 
particle, A, interacting with a particle, B, through the 
i-th beam and a slit, H, interacting with a slit, K, along 
the j-th direction. Each particle also interacts with the 
slits placed along the i-th direction.  
The linearised strain measures of the assembly are 
defined as follows: 
-  the relative displacement between two points, 

a
ip and b

ip  respectively on A and B, of the i-th beam 
connecting the two particles; represented by the 
vector  
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where a

iu and b
iu  are the displacement vectors of the 

centres a and b of the two particles while a
iR  and b

iR  
are the skew-symmetric tensors of the rotations of the 
two particles; 
-  the relative rotation between the two particles, 
represented by the skew-symmetric tensor 

ba
iii RRR −= ; 

-  the displacement  jump on a slit H, represented by 
the vector dh; 
- the relative displacement jump between two slits, H 
and K, represented by the vector kh

jjj ddd −= , where 
h
jd and k

jd  are the displacement jumps of the two slits 

interacting in the j-th direction;  
- the relative displacement between the centres, a and 
h, of the l-th particle-slit pair, A-H, 

)( lllll
hduv += βα , where lα and lβ  are coefficients 

depending on the number and the position of slits 
along the l-th direction. 
Correspondingly, the internal actions of the lattice 
systems are:  
- the interaction forces between the particles, A and B,  
through the i-th beam, represented by the    vectors a

it  

and b
it ; 

-  the interaction couples between A and B, 
represented by the skew-symmetric tensors, a

iC  and 
b
iC .  

-  the force due to the displacement jump on a slit H, 
hd , represented by the vector h

0z ; 

-  the interaction forces between the l-th particle-slit 
pair A-H, represented by the vectors a

lr  and h
lr .  

Accounting for the interactions balance and putting  

iii ttt =−= ba ,  

iiiiiiiii ])()([ CtpppptCC =⊗−−−⊗−−= bbababba ,  

jjj zzz =−= kh ,  

lll rrr =−= ha ,                                                          (2)                                       
 
the mean work of a representative element of 
volume V of the discrete system (lattice module) is  
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where N is the number of the beams, M the number 
of the slits, K the number of the pairs of interacting 
slits and L the number of the pairs of interacting 
particles and slits of the module. 
 
 
2. MACROSCOPIC MODEL  
 
According to the molecular theory of elasticity 
(Ericksen, 1977), the macroscopic model of the 
composite material considered is a continuum built 
up based on the kinematics of proper lattice models 
(Trovalusci & Masiani, 1999, 2003, Trovalusci & 
Augusti, 1998). By assuming that the kinematical 
variables a

iu , a
iR and hd , for each particle A and 

each slit H, are homogeneous, in order of accounting 
for short-range interactions, the mean work of the 
lattice module (3) can be expressed in terms of three 
homogeneous kinematical fields u(x), R(x), d(x) 
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where the statical variables  
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depend on the interactions of the lattice systems as 
well as on the geometry of the internal phases.                                                                                    
Considering the internal density work of a continuum 
with affine microstructure (Capriz, 1989), with the 
three homogeneous fields u(x), R(x) and d(x) as 
kinematical descriptors,  
 

dPdzRuS ∇⋅+⋅+∇+∇⋅= •S
2
1

W                  (9)                                                                            

 
and requiring the equivalence between W  and the 
mean work of the lattice module (4), in any u, R and 
d, the macro-stress measures of the equivalent multi-
field continuum can be identified as S=SD and the 
micro-stress measures as S=SD, z=zD and P=PD. The 
second order tensor S is the stress tensor, the third 
order tensor S is the micro-couple tensor, the vector z 
is the vector of the internal body micro-forces and the 
second order tensor P is the micro-stress tensor. As 
shown in Equations (5-8), all these quantities depend 
on the geometry of the internal phases. In particular, 
the micro-structural tensor S accounts for the 
presence of fibres while the two micro-structural 
measures, z and P, account for the presence of 
microcracks. If the microcracks are not considered, 
the equivalent continuum defined corresponds to a 
Cosserat continuum. 
 
 
2.1. Constitutive equations for the multi-field 
continuum 

 
 The response functions assumed for the internal 

actions of the lattice model are: linear elastic 
functions for the interacting forces and couples 
between particles 
 

)])(())((

))([(

ii

ii

bpxbRapxaR

baRuKt

−−∇+−−∇

+−−∇=
ba

             (10) 

 
)(R

ii baRC −∇= K ,                                                (11) 
 
where the second order and the third order tensors, 

iK  and R
iK , contain the elastic parameters of the 

matrix; linear elastic functions for the forces exerted 
between matrix and microcracks   
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with the components of the second order tensor Dh 
depending on the elastic constants of the matrix and 
on the microcracks size; non linear functions for the 
interacting forces between microcracks  
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where the constant D depends on the length of the 
microcracks and on the elastic constants of the 
matrix. The forces zj act in the direction connecting 
the slits and are analogous to the interacting forces 
exerted between parallel edge dislocations in elastic 
media. Finally, others constitutive functions are 
assumed for the particle-slit interactions  
 

)(i dd,u,r ∇∇= f .                                                (14) 
 
Based on the required equivalence in terms of virtual 
work of the micro and the macro-model, by 
substituting the Equations (10-14) into the Equations 
(5-8) the constitutive relationships of the equivalent 
multi-field continuum are obtained. Accounting for 
the central material symmetry, that is the basic 
material symmetry of a periodic, or statistically 
homogeneous medium, these relations can be 
expressed as 
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The components of the tensors A, D, F, H, L and N 
(respectively of the fourth, fourth, sixth, second, 
fourth and fourth order) and of the function ΨΨ 
depend on the elastic constants and on the geometry 
of the module. In particular, the tensor F contains 
internal scale parameters of the fibres while the 
tensor H and the function ΨΨ include internal scale 
parameters of the microcracks. These material 
parameters allow taking properly into accounts size 
effects.  

 
 

3. A ONE-DIMENSIONAL SAMPLE 
 
As test sample a one-dimensional problem is 
studied. A beam, of length L and height H, fixed at 
one end and subjected to uniformly distributed axial 
loads, q, along its axis is considered. The material of 
the beam is characterised by a periodic distribution 
of fibres, of length la, and of microcracks, of length 



 

lh. Both fibres and slits are distributed according to 
the ortho-tetragonal material-symmetry. 
Denoting with w, φ, and d the relevant components of 
the macro-displacement, the micro-rotation and the 
micro-displacement fields, respectively, the balance 
equations for this problem read 
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where A, H and N  are the relevant components of the 
constitutive tensors A, H and N. For simplicity, the 
interactions between fibres and microcracks, ri, and 
between microcracks, zj,  are not considered. In this 
case D , L and ΨΨ are zero.  
As boundary conditions the following conditions are 
assumed 
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where E is the elastic modulus of the matrix, ρS
 the 

microcracks density per unit length and θ the ratio 
between the area of the cross section of an ideal 
elastic string containing the microcracks and the area 
of the cross section of the truss, A. The overall 
displacement field of the beam can be easily found as   
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and the micro-rotation field is null.           
The values of the elastic parameters in the Equations 

(16-18) are 2
F H n ρalEA = , with ρF the microfibres 

density per unit length and n a constant depending on 
the number and the arrangement of the particles in the 

module, and Sh/ ρα == NH .  

In the case of homogeneous, isotropic, linear-elastic 
material A=E and δ=0 and the total displacement 
corresponds to the elastic displacement of the beam, 
we. Fixed a point x of the beam axis, Figure 1a shows 
the decreasing  of the displacement  ratio, of the 
microcracked  beam,  (we+d)/we, with the microfibres 
density, ρF, while Figure 1b shows the increasing of 
the displacement ratio, w/ we, of the fibre reinforced 
beam with the increasing of the microcracks density, 
ρS.      
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   Figure 1. Displacement ratios of the beam versus        
microcracksdensity (a) and microfibres density (b). 
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